add lab3 exercises

This commit is contained in:
Mariano Sciacco
2021-12-22 16:19:50 +01:00
parent b16ebd1d1d
commit 09fec19232
17 changed files with 803 additions and 0 deletions

View File

@@ -0,0 +1,57 @@
// ----------------------------------------------------------
// Hybrid System Example: Bouncing Ball
// ----------------------------------------------------------
// ----------------------------------------------------------
// Constants
// ----------------------------------------------------------
g:=1; // constant for gravity
// ----------------------------------------------------------
// System Description
// ----------------------------------------------------------
automaton bouncing_ball
contr_var: v, x;
synclabs: jump;
loc state: while x>=0 & x<=10 & v<=10 & v>=-10 wait {x'==v & v'==-g}
when x==0 & v<0 sync jump do {v'==-v*0.5 & x'==x} goto state;
initially: state & x==2 & v==0;
end
// ----------------------------------------------------------
// Define Partitioning
// ----------------------------------------------------------
// Add a new label for the transitions that are introduced
// between partitions
bouncing_ball.add_label(tau);
// Define the directions of the partitions
// here: in both axes with a min. threshold of partition size 0.2
bouncing_ball.set_refine_constraints((x, 0.2),(v,0.2),tau);
// With this partitioning we can use convex hull overapproximations,
// resulting in fewer polyhedra (one per partition)
//REACH_USE_CONVEX_HULL=true;
// ----------------------------------------------------------
// Define Partitioning (alternative)
// ----------------------------------------------------------
// We can also just partition in the v-direction, but then we must turn off
// the convex hull (try it...)
// bouncing_ball.set_refine_constraints((v,0.2),tau);
// REACH_USE_CONVEX_HULL=false;
// ----------------------------------------------------------
// Analysis Commands
// ----------------------------------------------------------
reg=bouncing_ball.reachable;
// ----------------------------------------------------------
// Saving Data for Graphical Output
// ----------------------------------------------------------
reg.print("out_reach",2); // output as a list of vertices
// for display with graph use, e.g.:
// graph -T X -C -B -q0.5 out_reach
// for display with matlab use, e.g.:
// plot_2d_vertices('out_m_reach')

View File

@@ -0,0 +1,81 @@
// ----------------------------------------------------------
// Hybrid System Example: Bouncing Ball
// ----------------------------------------------------------
// This version produces a plot of position over time.
// A clock is added to the system to model time explicitly.
// This gives us a another choice of partitioning: along
// the time-axis. It's fast, but doesn't work with convex
// hull.
//
// The complexity of this example requires us to put limits
// on the bits used in polyhedral computations.
// Otherwise, it may take very long or not terminate at all.
REACH_CONSTRAINT_LIMIT = 48;
REACH_CONSTRAINT_TRIGGER = 96;
CONSTRAINT_BITSIZE = 24;
REACH_BITSIZE_TRIGGER = 200;
// ----------------------------------------------------------
// Constants
// ----------------------------------------------------------
g:=1; // constant for gravity
// ----------------------------------------------------------
// System Description
// ----------------------------------------------------------
automaton bouncing_ball
contr_var: t, x, v;
synclabs: jump;
loc state: while x>=0 & x<=10 & v<=10 & v>=-10 & t<=5 & t>=0 wait {x'==v & v'==-g & t'==1}
when x==0 & v<0 sync jump do {v'==-v*0.5 & x'==x & t'==t} goto state;
initially: state & x==2 & v==0 & t==0;
end
// ----------------------------------------------------------
// Define Partitioning
// ----------------------------------------------------------
// Add a new label for the transitions that are introduced
// between partitions
bouncing_ball.add_label(tau);
// Define the directions of the partitions
// here: in both axes with a min. threshold of partition size 0.2
bouncing_ball.set_refine_constraints((x, 0.2),(v,0.2),tau);
// With this partitioning we can use convex hull overapproximations,
// resulting in fewer polyhedra (one per partition)
//REACH_USE_CONVEX_HULL=true;
// ----------------------------------------------------------
// Define Partitioning (alternative 1)
// ----------------------------------------------------------
// We can also just partition in the v-direction, but then
// we must turn off convex hull (try it...)
// bouncing_ball.set_refine_constraints((v,0.2),tau);
// REACH_USE_CONVEX_HULL=false;
// ----------------------------------------------------------
// Define Partitioning (alternative 2)
// ----------------------------------------------------------
// We can also just partition in the t-direction, but then
// we must turn off convex hull
// and refine the time-elapse operator at least twice
// at every step (try it...)
//TIME_POST_ITER=2;
//bouncing_ball.set_refine_constraints((t, 0.1),tau);
//REACH_USE_CONVEX_HULL=false;
// ----------------------------------------------------------
// Analysis Commands
// ----------------------------------------------------------
reg=bouncing_ball.reachable;
// ----------------------------------------------------------
// Saving Data for Graphical Output
// ----------------------------------------------------------
reg.project_to(t, x); // remove v to get a 2-dim output
reg.print("out_reach",2); // output as a list of vertices
// for display with graph use, e.g.:
// graph -T X -C -B -q0.5 out_reach
// for display with matlab use, e.g.:
// plot_2d_vertices('out_m_reach')

63
lab3/examples/evader.pha Normal file
View File

@@ -0,0 +1,63 @@
// Constants definition
//
// Automaton definition
//
automaton evader
contr_var: e, p, x; // e position of the evader
// p position of the pursuer
// x timer
synclabs: jump;
loc ClkW:
while 0 <= e <= 40 & 0 <= p <= 40 & x <= 2 wait
{e'==5 & -0.5 <= p' <= 6 & x'==1}
when (p == 0) sync jump do {e'==e & p'==40 & x'==x} goto ClkW;
when (p == 40) sync jump do {e'==e & p'==0 & x'==x} goto ClkW;
when (x >= 2) & (0 < e < 40) & (6*e - 5*p > 40) sync jump do
{e'==e & p'==p & x'==0} goto ClkW;
when (x >= 2) & (0 < e < 40) & (6*e - 5*p <= 40) sync jump do
{e'==e & p'==p & x'==0} goto CntrClkW;
when (e == 0) sync jump do {e'==e & p'==p & x'==x} goto Rescued;
when (e == 40) sync jump do {e'==e & p'==p & x'==x} goto Rescued;
loc CntrClkW:
while 0 <= e <= 40 & 0 <= p <= 40 & x <= 2 wait
{e'==-5 & -0.5 <= p' <= 6 & x'==1}
when (p == 0) sync jump do {e'==e & p'==40 & x'==x} goto CntrClkW;
when (p == 40) sync jump do {e'==e & p'==0 & x'==x} goto CntrClkW;
when (x >= 2) & (0 < e < 40) & (6*e - 5*p > 40) sync jump do
{e'==e & p'==p & x'==0} goto ClkW;
when (x >= 2) & (0 < e < 40) & (6*e - 5*p <= 40) sync jump do
{e'==e & p'==p & x'==0} goto CntrClkW;
when (e == 0) sync jump do {e'==e & p'==p & x'==x} goto Rescued;
when (e == 40) sync jump do {e'==e & p'==p & x'==x} goto Rescued;
loc Rescued:
while true wait {e'==0 & p'==0 & x'==0 };
initially: ClkW & x == 2 & e == 20 & p == 10;
end
// Compute the reachable set
//
region=evader.reachable;
//
// Output to file
//
// List regions (pairs of locations names and linear formulas)
region.print("evader_regions.txt", 0);
// Sequence of vertices in floating point form.
// Can be plotted with gnuplot
// Project on e and p
region.project_to(e, p);
region.print("evader.txt", 2);
// Safety verification
//
// definition of bad states
forbidden = evader.{$ & e == p};
reach_set = evader.is_reachable(forbidden);
reach_set.intersection_assign(forbidden);
echo "The intersection between the reachable set and the bad region is:";
reach_set.is_empty;

59
lab3/examples/evader2.pha Normal file
View File

@@ -0,0 +1,59 @@
// Constants definition
//
// Automaton definition
//
automaton evader
contr_var: e, p, x, p_zero; // e position of the evader
// p position of the pursuer
// x timer
// p_zero "frozen variable" that stores the
// initial position of the pursuer
synclabs: jump;
loc ClkW:
while 0 <= e <= 40 & 0 <= p <= 40 & x <= 2 wait
{e'==5 & -0.5 <= p' <= 6 & x'==1 & p_zero'==0}
when (p == 0) sync jump do {e'==e & p'==40 & x'==x & p_zero'==p_zero} goto ClkW;
when (p == 40) sync jump do {e'==e & p'==0 & x'==x & p_zero'==p_zero} goto ClkW;
when (x >= 2) & (0 < e < 40) & (6*e - 5*p > 40) sync jump do
{e'==e & p'==p & x'==0 & p_zero'==p_zero} goto ClkW;
when (x >= 2) & (0 < e < 40) & (6*e - 5*p <= 40) sync jump do
{e'==e & p'==p & x'==0 & p_zero'==p_zero} goto CntrClkW;
when (e == 0) sync jump do {e'==e & p'==p & x'==x & p_zero'==p_zero} goto Rescued;
when (e == 40) sync jump do {e'==e & p'==p & x'==x & p_zero'==p_zero} goto Rescued;
loc CntrClkW:
while 0 <= e <= 40 & 0 <= p <= 40 & x <= 2 wait
{e'==-5 & -0.5 <= p' <= 6 & x'==1 & p_zero'==0}
when (p == 0) sync jump do {e'==e & p'==40 & x'==x & p_zero'==p_zero} goto CntrClkW;
when (p == 40) sync jump do {e'==e & p'==0 & x'==x & p_zero'==p_zero} goto CntrClkW;
when (x >= 2) & (0 < e < 40) & (6*e - 5*p > 40) sync jump do
{e'==e & p'==p & x'==0 & p_zero'==p_zero} goto ClkW;
when (x >= 2) & (0 < e < 40) & (6*e - 5*p <= 40) sync jump do
{e'==e & p'==p & x'==0 & p_zero'==p_zero} goto CntrClkW;
when (e == 0) sync jump do {e'==e & p'==p & x'==x & p_zero'==p_zero} goto Rescued;
when (e == 40) sync jump do {e'==e & p'==p & x'==x & p_zero'==p_zero} goto Rescued;
loc Rescued:
while true wait {e'==0 & p'==0 & x'==0 & p_zero'==0};
initially: ClkW & x == 2 & e == 20 & p == p_zero & 0 <= p <= 40;
end
// Find winning starting points for pursuer
//
// Compute the reachable set
//
region=evader.reachable;
// Intersect with states where pursuer wins
forbidden = evader.{$ & e == p};
region.intersection_assign(forbidden);
// Project on p_zero to get the initial position for the pursuer for which the
// pursuer can win the game
region.project_to(p_zero);
// union over all locations
pursuer_wins = region.loc_union;
echo "The pursuer can win the game if it starts from:";
pursuer_wins.print;

View File

@@ -0,0 +1,16 @@
20 10
20 10
30 9
30 22
20 10
30 22
30 9
40 8
40 34
30 22
40 8
40 34

View File

@@ -0,0 +1,4 @@
region = evader.{
ClkW & (x == 2 & p == 10 & e == 20 | e == 5*x + 20 & 6*e >= 5*p + 70 & e + 10*p >= 120 & e <= 30 | e == 5*x + 30 & e + 10*p >= 120 & 30 <= e <= 40 & 6*e >= 5*p + 70),
Rescued & x == 2 & e == 40 & 8 <= p <= 34
};