
Lab 1 – NuSMV and safety properties

Exercise 1. Consider the railroad example of last lesson. You can find the SMV code of the
first solution, where trains can be simultaneously on the brige, in the file railroad_wrong.smv.

(a) Download the file from Moodle and verify with NuSMV that the invariant is falsified.
(b) Modify the code of controller to “fix the bug”. Check that the new controller satisfies

the invariant.

Exercise 2. Consider the fairness monitor WestFairMonitor for the west train in the figure.
Verify with MuSMV if the second attempt to design the railroad controller satisfy the fairness
requirement captured by the monitor.Safety Requirements 77

outW

signalW

outE

else2

else1

outE ? leave

signalW = green

else

3
outE ? leave

0

outW ? arrive

signalW = green

Figure 3.9: Fairness Monitor WestFairMonitor for the West Train

when the observed sequence of inputs and corresponding outputs violates the
desired safety requirement.

Not all requirements can be expressed as safety monitors. For the railroad cross-
ing example, consider the controller that always keeps both the traffic lights red.
Such a controller satisfies the invariant TrainSafety as well as the requirement
expressed by the safety monitor of figure 3.9. To rule out such solutions that
avoid bad situations by not attempting to do anything good, we need to impose
additional requirements such as, “If both trains are waiting, then the controller
must allow some train to eventually enter the bridge.” Such a requirement is
called a response requirement. In this requirement, we have not asserted any
bound on the number of rounds the trains have to wait. As a result, a finite
execution in which both trains are waiting in the last, say 10, rounds of the ex-
ecution cannot be considered a violation of the response requirement. Indeed,
hypothetically, there may be a correct implementation of the controller that is
slow in its processing of requests and needs 11 rounds to turn the signal to green.
In general, no finite execution can demonstrate that the response requirement is
truly violated. This is not a safety requirement and, thus, cannot be expressed
using monitors and invariants. If we change the requirement to a bounded re-
sponse requirement such as, “If both trains are waiting and both signals are red,
then the controller must turn one of the signals to green in the next round,” it
can be captured by a safety monitor. We will study specification and analysis
of response and other forms of liveness requirements in chapter 5.

Exercise 3.4 : Consider a component C with an output variable x of type int.
Design a safety monitor to capture the requirement that the sequence of values
output by the component C is strictly increasing (that is, the output in each
round should be strictly greater than the output in the preceding round).

Exercise 3.5 : Does the second attempt to design the railroad controller satisfy
the fairness requirement captured by the monitor WestFairMonitor? That
is, is the property WestFairMonitor.mode != 3 an invariant of the composite
system RailRoadSystem2 ‖ WestFairMonitor? If not, show a counterexample
execution.

Exercise 3. Consider the wolf, goat and cabbage problem:

Once upon a time a farmer went to a market and purchased a wolf, a goat, and
a cabbage. On his way home, the farmer came to the bank of a river and rented
a boat. But crossing the river by boat, the farmer could carry only himself and a
single one of his purchases: the wolf, the goat, or the cabbage.

If left unattended together, the wolf would eat the goat, or the goat would eat the
cabbage.

The farmer’s challenge was to carry himself and his purchases to the far bank of the
river, leaving each purchase intact. How did he do it?1

Model the wolf, goat and cabbage problem with NuSMV and use the counterexample-finding
functionality to find a solution.

Hint: write and invariant that, if satisfied, corresponds to the property “there is no solution
to the problem”. What happens if you try to verify this invariant with NuSMV?

1Wikipedia, Wolf, goat and cabbage problem. https://en.wikipedia.org/wiki/Wolf,_goat_and_cabbage_
problem


