
Lab 2 – NuSMV and liveness properties

1 Preliminary Exercise

Formal Verification: Practical Exercise⇤

Model Checking with NuSMV

Jacques Fleuriot Jake Palmer

Semester 2, 2018

This is the first non-assessed practical exercise for the Formal Verification course. You
will be using the NuSMV model checker to verify properties of a finite state machine model
representing a simple First In First Out (FIFO) digital circuit.

1 Getting Started

Create a new directory for your work on a DICE machine and change to that directory.
Download the template files from the Formal Verification web-page:

http://www.inf.ed.ac.uk/teaching/courses/fv

For instructions on using NuSMV, see the NuSMV Startup Guide, linked to from the
course page.

q3

q1 q2

ab

q4

ab

ab ab

Figure 1: Model for Q1

2 Preliminary Exercises

1. Create a NuSMV model for the system shown in Fig 1. For each of the LTL formulas
� below,

⇤Originally devised by Paul Jackson

1

Figure 1: Model for Exercise 1.

Create a NuSMV model for the system shown in Fig 1. For each of the LTL formulas ϕ below, use
NuSMV to (i) determine whether the system satisfies the formula ϕ, and (ii) persuade NuSMV to
exhibit some execution which satisfies ϕ. Check that the answers you get with NuSMV correspond to
your own understanding of the model and the formulas. In particular, you should understand why both
ϕ and ¬ϕ can be false.

(a) ♦b
(b) �a
(c) a U b
(d) a U ©b
(e) �♦b
(f) ♦�b

Hints:

• The simplest solution is to create a NuSMV model of the state machine that uses 1 state variable
with 4 values, one for each of the states of the state machine. Then use DEFINE assignments to
specify in which states the base formulas a and b are true. An alternative approach that can yield
a smaller model, but that can be slightly less straightforward, is to introduce 2 state variables, one
for a, one for b.

• For (ii), consider what NuSMV does if you try to verify ¬ϕ

• The NuSMV syntax for LTLSPEC is the following:

∧ (and): & ∨ (or): | ¬ (not): ! → (implies): ->

� (always): G ♦ (eventually): F © (next): X U (until): U

When writing NuSMV formulas, note that the precedence of LTL operators (stronger to weaker)
is F G X ! U & | ->.

1



2 NuSMV: verifying a FIFO

For this exercise, you verify properties of a model of a FIFO digital circuit. A block diagram of the FIFO
(First In First Out) circuit is shown in Figure 2.

3 Verifying a FIFO

For this part of the coursework, you verify properties of a model of a FIFO digital circuit.

3.1 Description of provided FIFO model

A block diagram of the FIFO (First In First Out) circuit is shown in Figure 2.

write

full

wr_data

read

rd_data

empty

data queue

Input interface Output interface

clock

Figure 2: FIFO Block Diagram

Abstractly, a FIFO is a variable-length queue of data words. It has two interfaces, one input
interface for adding words to one end of the queue and one output interface for reading and
removing words from the other end of the queue.

The hardware circuit is a synchronous circuit. Its behaviour is governed by a Boolean
clock signal input which usually alternates between true and false at a uniform frequency.
Each time the clock changes from false to true, the internal state of the circuit is updated,
based on the current internal state and inputs to the circuit at that time. When modelling
a synchronous circuit in NuSMV, we do not explicitly include the clock signal. Rather, we
design a transition system that takes one step per clock cycle and that uses the transition
relation to specify how the internal state is updated based on the current state and inputs.
In general synchronous circuits might have outputs that depend both on the current state
and the inputs. Here we use a restriction of this scheme where the outputs depend only on
the current state. For simplicity, the following description of FIFO behaviour is in terms of
the transition system model rather than the hardware circuit.

To add or write a word of data to the FIFO, the data is presented on the write data
wr data input and the Boolean signal write is asserted (set to true). Providing the FIFO is
not currently full, the write data word is then added to the queue on the transition to the
next step. The FIFO has a maximum number of words it can hold in the queue at any one
time. The Boolean full output of the FIFO indicates whether or not it currently holds the
maximum number.

The read data rd data output of the FIFO shows the current end word in the FIFO’s
internal queue, providing that the queue is not empty. The queue being empty is signalled
by the Boolean empty output being set to true. If the Boolean read signal is set to true and

3

Figure 2: Block diagram of the FIFO.

A FIFO is a variable-length queue of data words. It has two interfaces, one input interface for adding
words to one end of the queue and one output interface for reading and removing words from the other
end of the queue.

To add or write an element to the FIFO, the data is presented on the wr_data input and the Boolean
signal write is asserted (set to true). Provided that the FIFO is not full, the element is added to the
queue on the transition to the next step. The FIFO has a maximum number of elements it can hold in
the queue at any one time. The Boolean output full of the FIFO indicates whether or not it currently
holds the maximum number.

The output rd_data of the FIFO shows the current last element in the FIFO’s internal queue, provided
that the queue is not empty. The queue being empty is signalled by the Boolean output empty being
set to true. If the Boolean signal read is set to true and the queue is not empty, on the transition to
the next step the current last element in the queue is removed and the element behind it (if any) then
appears on the FIFO output rd_data.

The file fifo.smv contains the FIFO model. For simplicity and to ensure rapid NuSMV execution times,
we set the DEPTH constant for the maximum number of elements in the queue to 5 and the WIDTH constant
for the element size to 1 bit. A real system would often use larger values for both parameters.

Internally, the FIFO uses a circular buffer to implement the queue. This consists of an array buffer of
size DEPTH and two pointers into this array, the read pointer rd_p and the write pointer wr_p. If the
queue is not empty, the read pointer points to the last element of the queue. If the queue is not full,
the write pointer points to the position to write the next input element. When a new element is written
into the queue, the write pointer is incremented, wrapping it around as necessary. When an element in
the queue is removed, the read points is incremented, wrapping it around as necessary. See Figure 3 for
two examples of the internal configuration of the FIFO when the queue holds the words w0, w1 and w2,
added in that order.

the queue is not empty, on the transition to the next step the current end word in the queue
is removed and the word behind it (if any) then appears on the FIFO rd data output.

The provided file fifo.smv presents the NuSMV FIFO model. Have a look at the model.
For simplicity and to ensure rapid NuSMV execution times, we set the DEPTH constant for
the maximum number of words to 5 and the WIDTH constant for the word size to 1. In
practice we would often use larger values for both parameters.

Internally, the FIFO uses a circular bu↵er to implement the queue. This consists of an
array buffer of words of size DEPTH and two pointers into this array, the read pointer rd p
and the write pointer wr p. If the queue is not empty, the read pointer points to word which
is the current output word of the queue and, if the queue is not full, the write pointer points
to the position to write the next input word. When a new word is written into the queue, the
write pointer is incremented, wrapping it around as necessary. When a word in the queue is
removed, the read points is incremented, wrapping it around as necessary. See Figure 3 for
two examples of the internal configuration of the FIFO when the queue holds the words w0,
w1 and w2, added in that order.

w0

w1

w2

(b)

rd_p

wr_p

0

1

2

3

4

0

1

2

3

4

w0

w1

w2

(a)

rd_p

wr_p

buffer buffer

Figure 3: Examples of internal FIFO configurations

With the provided FIFO realisation, the FIFO could be either empty or full when the two
pointers are equal. The design uses the Boolean empty internal state variable to distinguish
between these two cases.

3.2 Properties to verify

In the provided template file fifo-properties.smv, add formulas for the LTL and CTL
properties requested below. Verify your properties with NuSMV by running the command

NuSMV -pre cpp fifo.smv

The fifo.smv file brings in the fifo-properties.smv file using a preprocessor #include

directive at its end. The -pre cpp option to NuSMV here is necessary to ensure it runs
the C preprocessor on fifo.smv in order to interpret this directive. You will get warnings
until you fill in the LTL specififcations. If you don’t want to see counter-examples for false
formulas, also add the -dcx option.

1. Write LTL formulas for the following properties (all true of the FIFO model in fifo.smv):

(a) the property

4

Figure 3: Example of internal configurations of the FIFO.

In the provided implementation of the FIFO, the queue could be either empty or full when the two
pointers are equal. The design uses the state variable empty to distinguish between these two cases.

2



2.1 Properties to verify

In the provided template file fifo-properties.smv, add formulas for the LTL properties requested
below. Verify your properties with NuSMV by running the command

NuSMV -pre cpp fifo.smv

The fifo.smv file brings in the fifo-properties.smv file using a preprocessor directive #include. The
-pre cpp option of NuSMV is necessary to ensure it runs the C preprocessor on fifo.smv in order to
interpret this directive. You will get warnings until you fill in the LTL specifications.

Write LTL formulas for the following properties (all true in fifo.smv):

(a) It is never the case that the FIFO indicates simultaneously it is both empty and full

(b) If write is persistend and read is not recurrent, then the FIFO eventually becomes full.

(c) At any time, if a 1 is presented to the FIFO data input and write is asserted, then eventually a 1
will appear on the FIFO data output

with further reasonable assumptions added after the if concerning FIFO signals such as read, empty
or full, to ensure the property checks true. Consult the NuSMV user guide for information on word
constants to be able to refer to the number 1.

(d) the same property as in (c), except that it is phrased to hold for any data value, not just the value
1. Use the ‘frozen variable’ data1 to do this. Consult the NuSMV user guide for documentation on
frozen variables (also sometimes known in temporal logic as rigid variables).

(e) the same property as in (d), except that, in addition, it requires the empty output of the FIFO to
be set to false at all times inbetween the time the write of the data is set up and the time the data
can first be read out, but not actually at either of these times. You may take advantage of the fact
that the earliest we expect the data to appear is the step after it is written.

(f) a similar property to that for (d), except that it assumes that two possibly-distinct data values are
input on consecutive steps, and checks for the same two values appearing on the output on consecutive
steps. Use the provided frozen variables data1 and data2 to refer to the two data values.

2.2 Bug correction

The FIFO has a bug. In this part you discover and fix it.

1. In the indicated place in fifo-properties.smv, write an LTL property that checks that

always, if the FIFO indicates it is empty, then the read and write pointers are equal.

NuSMV should find it false and show a counter-example.

2. Make a copy of fifo.smv called fifo-fixed.smv. Make changes to the code in the main module
in the fifo-fixed.smv file to fix this bug. Your changes should address the general problem
identified by this bug.

3



3 Principles of LTL model checking

As remarked in lecture, in LTL model checking of a formula ϕ, one constructs a Büchi monitor for ¬ϕ
which accepts just those traces ρ that satisfy ¬ϕ. The formula is then true just when there are no
accepting executions in the composition of the system with the monitor.

Let ϕ be the LTL property �♦write→ ♦full.

(a) Write ¬ϕ in a normalised form, where the negations are pushed inwards so they just surround atomic
formulas and the only binary logical connectives used are ∧ and ∨. This should simplify the writing
of a Büchi automaton for ¬ϕ.

(b) Write a NuSMV module that emulates a Büchi monitor for ¬ϕ. Hint: you should not need an
automaton with more than 3 or 4 states.

(c) Write an LTL property that captures the acceptance condition of the Büchi automaton, that, if true,
indicates that there are no accepting runs of the monitor.

Insert your solution into the file fifo-ltlmc.smv in the indicated positions at the start. This file include
a copy of the module from fifo.smv, but with the main module renamed to system and a new main

module that composes the system with the negated formula automaton.

4


